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Abstract

We introduce a new, approximate sum rule for determining bulk properties of multicom-

ponent systems, in terms of the pure components properties. We apply this expression

for the study of lattice parameters, coliesive energies and bulk moduli of binary alloys.

The correct experimental trends (i.e., departure from average values) are predicted ill

all cases.
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In this paper we introduce a new expression for the direct calculation of equilibrium

properties of alloys in terms of the pure components. From this new rule, which can be

obtained as a particular case from the method for alloys energetics introduced recently by

Bozzolo, Ferrante and Smith M , we can simultaneously derive three separate expressions for

obtaining the lattice parameter, cohesive energy and bulk modulus of alloys.

Consider an alloy of N different elements A.,AB.,B... where x i denotes the concentra-

tion of the atomic species i. Let EC (x), a(x) and B(x) be the cohesive energy, lattice

parameter and bulk modulus, respectively, of the alloy characterized by the concentrations

X : (xA, xB, ...). Then, our approximate expression for the binding energy as a function of

concentration x and lattice parameter r, E(x, r), in terms of the corresponding expressions

for the pure elements is given by

E(x, r) _	 xiEi(r)
	

(1)
i

As mentioned above, this expression, as well as its range of applicability, has a theoretical

foundation in the recently proposed BFS M method. There is no formal derivation of this

rule, but, in the framework of BFS, we can find an explanation for its origin and some idea

about its validity and shortcomings. This will discussed at length elsewhere. Here, our goal

is to provide three new approximate rules that would enable one to describe equilibrium

alloy properties in terms of pure materials in a simple way. Although it is approximate,

recent first-principles calculations closely follow the general behavior predicted by Eq. (1).

Terakura et a1 (2) analyzed the phase stability of several binary alloys systems composed

of Ni, Pd or Pt as one element and Cu, Ag and Au as the other. From their LDA band

calculations they found that their predictions for the excess energy AE,,,, (r) for the ordered
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alloy structures A 7jj B4 _,,,, (m = 0, ...,4) admit a, simple parametrization ofthe form

AE,n(r) —_ 
(p'n ) 2n — 

C gTl n 

+ 7m	 (2)

where the parameters p,, q, and r,,,, are listed in Ref. 2, with n = 3.5 and m = 0,4

represent the pure elements.. The excess energy for the disordered alloy can be represented

by a similar functional form('),

(

p_) 2n

 _	 + Rx(3)
r 	 r l

with Px n = Em-0 ^m( X )pmn , Q n — ^m=0 c.(x)gm and Rx = E4
m-0 c„,(x)r,,,,, Where

c,,,(x) = ( 4 ) X-(1 — x)4--. If these results behaved according to Eq. (1), then a di-

rect consequence of this rule,

AED (r, x = 4 ) = AE,n,( r ) ; rn = 0, ..., 4	 (4)

would also have to be satisfied. In terms of the coefficients used in Ref. 2, this condition

can be written as set of simultaneous requirements on these coefficients:

Pm/4 = PM' I Qm/4 = 4m , R,,,m /4 = rn: i m= 1, 2, 3.	 (5)

We show the results of this comparison in Table 1 for the Cu-Ag, Cu-Au and Ag-Au alloys,

where agreement in the two sides of Eq. (5) is a test of the sum rule. Although the

comparison is not exact (it's not supposed to be), the agreement is surprisingly good,

making the use of Eq. (1) a viable alternative to expressions M for obtaining alloy cohesive

energies, bulk moduli and lattice parameters, such as Vegard's law ( ' ) for lattice parameters.

The application of Eq. (1) is greatly simplified by the fact that the binding energy

curve of a pure element i, Ei (r), can be represented by a Rydberg function (6)

Ei (r) = —Ec,i( 1 + a")e_a.
	

(0)

AED (r,x) _
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with a' = qi (r — a i ) 11i , where a i is the equilibrium lattice parameter of species i and the

scaling length 1i is related to the cohesive energy of the pure element Ec ,i and its bulk

modulus Bi as 1, = Ec,i /127rgi Bi . qi is the ratio between the equilibrium Wigner-Seitz

radius and equilibrium lattice parameter of species i.

Although it is a well-known fact that the binding energy curve (including alloys) is

of a universal nature ls 71 , the functional form chosen to represent it is just one of many

choices. If we used this functional form in Eq. (1), a representation of the alloys binding

energy curve could only be achieved by a numerical fit to a Rydberg function. To avoid this

complication, and in order to provide simple analytical expressions for approximate values

of the static properties of the alloys, we expand the Rydberg function to second order on

both sides of Eq. (1) thus obtaining a simple system of equations for Ec(x), B(x) and a(x).

The ensuing expressions for these quantities are

a ( x ) = < Qa2B >	 ( 7)< QaB >

B(x)=1 < QaB >2	
(S)Qs<Qa2B>,

and

E(x) =< E > — < Qa 3 B > +< Qa
2 B >	 (9)

< QaB >

where

<0>=	 xi0i
	

(10)
i

and Q i = 127rg3.

If, for example, we focus our attention on binary alloys of elements with the same

structure as the pure crystals, the Q's cancel in Egs.(7)-(9). Moreover, it is a simple

exercise to examine these expressions for their departure from the corresponding average
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values AO(x) =< Ox > — < 0 > (for 0 = a, B and EC ). The derivative at the origin of

A 0 for each one of these quantities are

C

dOa(x))XA=O = (aA — aB)(aABA — aBBB)	 (11)
dx 	 aBBB

CdzNB(x))XA=O _ — BA	 2
 2 ( aA — aB)	 (12)dx 	 aB

and

CdOEC(x))XA=O
= — aA BA (aA — aB ) 2 .	 ( 13)

dx 

Similar expressions can be obtained for the limit xA = 1. Eq.(11) allows for deviations

above and below the average values, whereas Eqs. (12) and (13) predict cohesive energies

and bulk moduli below the average values for all concentrations. For this simple case, the

maximum deviation of the lattice parameter from the average value < a > is given by

Aama =	
byA	

(14)z	
( 1 + 7)( eA -Y + CB)

where b = aA — aB, A = aAeA — aBeB, e, = a=B i and rye = eB /eA . This maximum

deviation occurs at xA = I+r Finally, it is straightforward to show that Vegard's law can

be recovered as a particular case when y = 1.

The predictions of the trends predicted by Eq. (11) were successfully tested against 34

binary alloys of fcc (Ag, Al, Au, Cu, -y-Fe, Ir, Ni, Pd, Pt), bec (Cr, Cs, a-Fe, K, Li, Mo,

Na, Nb, Rb, Ta, V, W) elements, as well as Si and Ge in their diamond and fcc phases for

which complete experimental data of the solid solutions is available ( ' ) . Similar results are

found if other representations of the binding energy curves are used in our proposed rule

( Eq - (1))-

The trends in Eq. (11) depend on a coupling between the lattice parameter and com-

pressibility as might be expected intuitively. This result is a consequence of the fact that
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in our expression (Eq. (1)) the binding energy of the pure materials determine the behav-

ior of the alloys. However, the specific functional form depends on the choice adopted for

representing the binding energy curve (in this case, a simple quadratic expansion of the

Rydberg function). The simple example studied in this work predicts the correct trends in

the slopes (Eq. (11)) of the deviation from the average values as well as the trends in the

relative deviations for different alloys.

We have presented a new method for estimating the cohesive energy, lattice parameter

and bulk modulus for alloys from pure element properties. The method has been successfully

tested by comparisons with ab-initio calculations and trends in experimental data.
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System m I Pm/4
I	

p„L Qm 4 qm l^m 4 r.

AgAu3 1 8.46 8.45 11.37 11.35 1.98 1.96
AgAu 2 8.33 8.33 11.07 11.07 1.82 1.82
A93 Au 3 8.21 8.21 10.77 10.77 1.66 1.66
CuA93 1 7.84 7.82

10-11 10-08
1.51 1.50

CuAg 2 7.60 7.59 9.77 9.79 1.50 1.52
Cu3 Ag 3 7.34 7.32 9.42 9.41 1.46 1.47
CuAu3 1 8.26 8.22 11.07 11.01 1.93
CuAu 2 7.91 7.88 10.45 10.45 LI.7 1.79
Cu3 Au 3 7.52 7.47 9.78 9.75 1.59

Table l: Comparison of the parameters (P,Q,R) and (p,q,r) as defined by Eqs. (2) and (3)
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